
Accelerating the Fast Fourier Transform
on Large Scale Heterogeneous Systems

MUG’24, Columbus, OH
August 19-21, 2024

Ahmad Abdelfattah
Innovative Computing Laboratory
University of Tennessee, Knoxville

“The heFFTe Library”

Credit to the heFFTe team

Ø I am the newest member to this team J

2

§ Miroslav Stoyanov (ORNL)
§ Alan Ayala (UTK → AMD) – yesterday’s talk
§ Stan Tomov (UTK → NVIDIA)
§ Azzam Haidar (UTK → NVIDIA)
§ Jack Dongarra (UTK)
§ Sebastien Cayrols (UTK → NVIDIA)
§ Jiali Li (UTK)
§ George Bosilca (UTK → NVIDIA)
§ Veronica Montanaro (ETH)
§ Sonali Mayani (ETH)
§ Andreas Adelmann (ETH)
§ students and outside collaborators

The purpose of this talk

1) High-level introduction to heFFTe as an efficient distributed
implementation of multi-dimensional FFT

2) The status of heFFTe post ECP
3) heFFTe as a benchmark for MPI implementations
4) Impact on some applications
5) Future Directions

3

Fast Fourier Transform (FFT)

• FFT computes the Discrete Fourier Transform (DFT) of a series:
Let x = x0, ..., xN-1 are complex numbers. The DFT of x is the sequence
X = X0, X1, …, Xn-1 ,such that:

• DFT can be computed as a matrix-vector multiplication (GEMV) in 𝓞(N2)
FLOPs (memory-bound)

• FFT reduces the complexity to 𝓞(N log2 N) (even more memory-bound)
• The Inverse Discrete Fourier Transform (IDFT) is similarly defined except that

the ‘e’ exponents are taken as (i 2π k n / N), and elements divided by N

4

FFT in the DOE’s Exascale Computing Project (ECP)

• Some of these applications require multi-dimensional FFT at large scale
• Must run on DOE’s ECP systems (i.e. use GPUs)

heFFTe: Highly Efficient Exascale FFTs Library for
Heterogeneous Architectures
• 1D, 2D, and 3D distributed FFT library

• GPU-enabled
• Relies on single-node FFT libraries (FFTW, cuFFT, rocFFT, & oneMKL)
• Simple data transposition/reshape kernels
• MPI Communication

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

 31 32 33 34 35 36

 1 2 3 4 5 6

1!

–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!

–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!
–!!–!–!!–!!–!–!!!

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

1!

Steps in preparing “pencils” in the different dimensions
and computing batches of 1D FFTs locally on each node/GPU

Status of heFFTe

• heFFTe-2.4.0 with support for CPUs, Nvidia, AMD, and Intel GPUs
• Capabilities:

• Multidimensional FFTs
• C2C, R2C, C2R
• DCS, DST, and convolution
• Batched FFTs
• Multiple data layouts & communications patterns

• Open-source Software
● Spack installation and integration in xSDK
● Homepage: http://icl.utk.edu/fft/

Repository: https://github.com/icl-utk-edu/heffte
• So far, no major developments after ECP closeout

7

http://icl.utk.edu/fft/
https://github.com/icl-utk-edu/heffte

heFFTe among Other Developments

heFFTe is heavily communication-bound
• Using heFFTe’s own minimal tracing tool
• MPI calls dominate the execution time, especially on the GPU
• Any improvement in communication leads to huge performance gains

9

Time Breakdown of heFFTe on Frontier using rocFFT
3D FFT, N = 1024, FP64 (C2C), ROCm-5.6.0, cray-mpich/8.1.27

MPI (a2av)
79.17%

Pack
1.62%

Unpack
1.66%

FFT-1D
17.42%

Scale
0.13%

Other
0.00%

MPI (a2av)
88.61%

Pack
2.79%

Unpack
2.96%

FFT-1D
5.51% Scale

0.12%
Other
0.00%

8 nodes, 64 ranks 64 nodes, 512 ranks

**with explicit synchronization after kernel launches

heFFTe is heavily communication-bound

10

0 0.05 0.1 0.15 0.2 0.25 0.3
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64

Time (s)

M
PI

 R
an

ks
Execution trace: 3D FFT, N = 1024, Backend=rocFFT, 8 nodes, 64 MPI ranks

3D FFT, N = 1024,
FP64,
ROCm-5.6.0,
cray-mpich/8.1.27
8 nodes
64 ranks

MPI (a2av)
FFT-1D
Pack

Unpack

Scale

**with explicit synchronization after kernel launches

• Using heFFTe’s own minimal tracing tool
• MPI calls dominate the execution time, especially on the GPU
• Any improvement in communication leads to huge performance gains

heFFTe benchmark sweep on Frontier

11

0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0

1 2 4 8 16 32 64 12
8

Tfl
op
/s

Nodes (8 GPUs/node, 1 MPI rank/GPU)

reorder/slabs/no-aware
reorder/slabs/aware
reorder/pencils/no-aware
reorder/pencils/aware

no-reorder/slabs/no-aware
no-reorder/slabs/aware
no-reorder/pencils/no-aware
no-reorder/pencils/aware

a2a

1 2 4 8 16 32 64 12
8

a2av

1 2 4 8 16 32 64 12
8

p2p

1 2 4 8 16 32 64 12
8

p2p-pl

• 3D FFT, N = 1024
• rocFFT backend (ROCm-5.3.0)
• Cray-mpich-8.1.23
• 32 different runs

§ 4 communication patterns (a2a, a2av, p2p,
p2p_pl)

§ 2 decompositions (pencils vs. slabs)
§ 2 FFT-1D modes (contiguous vs. strided)
§ 2 modes for MPI (std vs. GPU-aware)

• Could test/expose several
aspects of an MPI implementation

• p2p: uses MPI_Send and MPI_Irecv, receive is pipelined with packing and sending
• p2p_pl: uses MPI_Isend and MPI_Irecv, all sending receiving packing and unpacking are pipelined

Integration to ECP EXAALT

Opportunity: Approximate FFT
• Some applications tolerate accuracy in FFT
• approximate FFT computations (with casting to FP32 / FP16)

13

Impact on Accuracy

• These solvers are in Independent Parallel Particle
Layer (IPPL) and require Discrete Cosine Transform
of type 1
Montanaro et al. (ETH)

Impact on Performance

heFFTe Tunability and Configurability
• Which set of options is best for a given workload?

• Multiple MPI implementations (a2a, a2av, p2p, pipelined p2p)
• Multiple decompositions (pencils, slabs)
• Multiple layouts (contiguous, strided)
• Run-time parameters J

14

heFFTe using MVAPICH

15

Bandwidth benchmark for several MPI implementations on Summit (16 nodes)

heFFTe using MVAPICH

16

Bandwidth benchmark for several MPI implementations on Summit (16 nodes)

• > 50% improvement in latency and bandwidth against Cray-mpich on Frontier (AlltoAll) --
(Dr. Panda’s keynote yesterday)

• More expected with on-the-fly data compression

Conclusion

• heFFTe is an ECP-funded library for multi-dimensional FFT
computations
§ Mainly targeting DOE’s Exascale system
§ GPU-enabled for NVIDIA, AMD, and Intel GPUs
§ Highly configurable

• heFFTe can serve as a good benchmark for MPI implementations
§ ~90% of execution time is spent in MPI calls
§ Uses different communication patterns (a2a, a2av, p2p, and pipelined p2p)

17

Future Directions

• heFFTe using MVAPICH-Plus 4.0b
§ Joint project with Dr. Panda’s group to use MVAPICH as UMS on Frontier

• MVP-4.0b brings promising improvement over Cray-mpich (> 50% for latency & BW in AlltoAll)
• On-the-fly compression could yield even more significant performance gains

§ Plan to target a large NVIDIA system based on H100 (MN5 @ BSC)

• Robust profiling and tracing with TAU
§ Expose potential bottlenecks in heFFTe or the underlying MPI implementation

• Auto-tuning framework for heFFTe?

18

We are hiring!

• Position for a postdoctoral research associate
• https://icl.utk.edu/jobs/

19

https://icl.utk.edu/jobs/

Thank You

