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Credit to the heFFTe team

Ø I am the newest member to this team J
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§ Miroslav Stoyanov (ORNL)
§ Alan Ayala (UTK → AMD) – yesterday’s talk
§ Stan Tomov (UTK → NVIDIA)
§ Azzam Haidar (UTK → NVIDIA)
§ Jack Dongarra (UTK)
§ Sebastien Cayrols (UTK → NVIDIA)
§ Jiali Li (UTK)
§ George Bosilca (UTK → NVIDIA)
§ Veronica Montanaro (ETH)
§ Sonali Mayani (ETH)
§ Andreas Adelmann (ETH)
§ students and outside collaborators



The purpose of this talk

1) High-level introduction to heFFTe as an efficient distributed 
implementation of multi-dimensional FFT

2) The status of heFFTe post ECP
3) heFFTe as a benchmark for MPI implementations
4) Impact on some applications
5) Future Directions
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Fast Fourier Transform (FFT)

• FFT computes the Discrete Fourier Transform (DFT) of a series:
Let x = x0, ..., xN-1 are complex numbers. The DFT of x is the sequence 
X = X0, X1, …, Xn-1 ,such that:
                                                                

• DFT can be computed as a matrix-vector multiplication (GEMV) in 𝓞(N2) 
FLOPs (memory-bound)

• FFT reduces the complexity to 𝓞(N log2 N) (even more memory-bound)
• The Inverse Discrete Fourier Transform (IDFT) is similarly defined except that 

the ‘e’ exponents are taken as  (i 2π k n / N), and elements divided by N
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FFT in the DOE’s Exascale Computing Project (ECP) 

• Some of these applications require multi-dimensional FFT at large scale
• Must run on DOE’s ECP systems (i.e. use GPUs)



heFFTe: Highly Efficient Exascale FFTs Library for 
Heterogeneous Architectures 
• 1D, 2D, and 3D distributed FFT library

• GPU-enabled
• Relies on single-node FFT libraries (FFTW, cuFFT, rocFFT, & oneMKL)
• Simple data transposition/reshape kernels
• MPI Communication
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Steps in preparing “pencils” in the different dimensions 
and computing batches of 1D FFTs locally on each node/GPU



Status of heFFTe

• heFFTe-2.4.0 with support for CPUs, Nvidia, AMD, and Intel GPUs
• Capabilities:

• Multidimensional FFTs
• C2C, R2C, C2R
• DCS, DST, and convolution
• Batched FFTs
• Multiple data layouts & communications patterns 

• Open-source Software
● Spack installation and integration in xSDK
● Homepage: http://icl.utk.edu/fft/

Repository: https://github.com/icl-utk-edu/heffte
• So far, no major developments after ECP closeout
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http://icl.utk.edu/fft/
https://github.com/icl-utk-edu/heffte


heFFTe among Other Developments



heFFTe is heavily communication-bound
• Using heFFTe’s own minimal tracing tool
• MPI calls dominate the execution time, especially on the GPU
• Any improvement in communication leads to huge performance gains 
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Time Breakdown of heFFTe on Frontier using rocFFT
3D FFT, N = 1024, FP64 (C2C), ROCm-5.6.0, cray-mpich/8.1.27
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8 nodes, 64 ranks 64 nodes, 512 ranks

**with explicit synchronization after kernel launches



heFFTe is heavily communication-bound
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Execution trace: 3D FFT, N = 1024, Backend=rocFFT, 8 nodes, 64 MPI ranks

3D FFT, N = 1024, 
FP64, 
ROCm-5.6.0, 
cray-mpich/8.1.27
8 nodes
64 ranks
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**with explicit synchronization after kernel launches

• Using heFFTe’s own minimal tracing tool
• MPI calls dominate the execution time, especially on the GPU
• Any improvement in communication leads to huge performance gains 



heFFTe benchmark sweep on Frontier
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• 3D FFT, N = 1024
• rocFFT backend (ROCm-5.3.0)
• Cray-mpich-8.1.23
• 32 different runs

§ 4 communication patterns (a2a, a2av, p2p, 
p2p_pl)

§ 2 decompositions (pencils vs. slabs)
§ 2 FFT-1D modes (contiguous vs. strided)
§ 2 modes for MPI (std vs. GPU-aware)

• Could test/expose several 
aspects of an MPI implementation

• p2p: uses MPI_Send and MPI_Irecv, receive is pipelined with packing and sending
• p2p_pl: uses MPI_Isend and MPI_Irecv, all sending receiving packing and unpacking are pipelined



Integration to ECP EXAALT



Opportunity: Approximate FFT
• Some applications tolerate accuracy in FFT
• approximate FFT computations (with casting to FP32 / FP16)
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Impact on Accuracy 

• These solvers are in Independent Parallel Particle 
Layer (IPPL) and require Discrete Cosine Transform 
of type 1
Montanaro et al. (ETH) 

Impact on Performance 



heFFTe Tunability and Configurability
• Which set of options is best for a given workload?

• Multiple MPI implementations (a2a, a2av, p2p, pipelined p2p)
• Multiple decompositions (pencils, slabs)
• Multiple layouts (contiguous, strided)
• Run-time parameters J
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heFFTe using MVAPICH
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Bandwidth benchmark for several MPI implementations on Summit (16 nodes)



heFFTe using MVAPICH
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Bandwidth benchmark for several MPI implementations on Summit (16 nodes)

• > 50% improvement in latency and bandwidth against Cray-mpich on Frontier (AlltoAll)  -- 
(Dr. Panda’s keynote yesterday)

• More expected with on-the-fly data compression



Conclusion

• heFFTe is an ECP-funded library for multi-dimensional FFT 
computations
§ Mainly targeting DOE’s Exascale system 
§ GPU-enabled for NVIDIA, AMD, and Intel GPUs
§ Highly configurable

• heFFTe can serve as a good benchmark for MPI implementations
§ ~90% of execution time is spent in MPI calls
§ Uses different communication patterns (a2a, a2av, p2p, and pipelined p2p)
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Future Directions

• heFFTe using MVAPICH-Plus 4.0b
§ Joint project with Dr. Panda’s group to use MVAPICH as UMS on Frontier

• MVP-4.0b brings promising improvement over Cray-mpich (> 50% for latency & BW in AlltoAll)
• On-the-fly compression could yield even more significant performance gains

§ Plan to target a large NVIDIA system based on H100 (MN5 @ BSC)

• Robust profiling and tracing with TAU
§ Expose potential bottlenecks in heFFTe or the underlying MPI implementation

• Auto-tuning framework for heFFTe?
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We are hiring!

• Position for a postdoctoral research associate 
• https://icl.utk.edu/jobs/
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https://icl.utk.edu/jobs/


Thank You


